Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1132786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265571

RESUMO

Introduction: Chymase is a highly destructive serine protease rapidly neutralized in the circulation by protease inhibitors. Here we test whether pericardial fluid (PCF) chymase activation and other inflammatory biomarkers determine intensive care unit length of stay, and explore mechanisms of chymase delivery by extracellular vesicles to the heart. Methods: PCF was collected from adult patients (17 on-pump; 13 off-pump) 4 h after cardiac surgery. Extracellular vesicles (EVs) containing chymase were injected into Sprague-Dawley rats to test for their ability to deliver chymase to the heart. Results: The mean intensive care unit (ICU) stay and mean total length of stay was 2.17 ± 3.8 days and 6.41 ± 1.3 days respectively. Chymase activity and 32 inflammatory markers did not differ in on-pump vs. off-pump cardiac surgery. Society of Thoracic Surgeons Predicted Risk of Morbidity and Mortality Score (STS-PROM), 4-hour post-surgery PCF chymase activity and C-X-C motif chemokine ligand 6 (CXCL6) were all independent predictors of ICU and total hospital length of stay by univariate analysis. Mass spectrometry of baseline PCF shows the presence of serine protease inhibitors that neutralize chymase activity. The compartmentalization of chymase within and on the surface of PCF EVs was visualized by immunogold labeling and transmission electron microscopy. A chymase inhibitor prevented EV chymase activity (0.28 fmol/mg/min vs. 14.14 fmol/mg/min). Intravenous injection of PCF EVs obtained 24 h after surgery into Sprague Dawley rats shows diffuse human chymase uptake in the heart with extensive cardiomyocyte damage 4 h after injection. Discussion: Early postoperative PCF chymase activation underscores its potential role in cardiac damage soon after on- or off-pump cardiac surgery. In addition, chymase in extracellular vesicles provides a protected delivery mechanism from neutralization by circulating serine protease inhibitors.

2.
Am J Physiol Heart Circ Physiol ; 324(4): H484-H493, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800507

RESUMO

Mitochondrial DNA (mtDNA) haplotype regulates mitochondrial structure/function and reactive oxygen species in aortocaval fistula (ACF) in mice. Here, we unravel the mitochondrial haplotype effects on cardiomyocyte mitochondrial ultrastructure and transcriptome response to ACF in vivo. Phenotypic responses and quantitative transmission electron microscopy (TEM) and RNA sequence at 3 days were determined after sham surgery or ACF in vivo in cardiomyocytes from wild-type (WT) C57BL/6J (C57n:C57mt) and C3H/HeN (C3Hn:C3Hmt) and mitochondrial nuclear exchange mice (C57n:C3Hmt or C3Hn:C57mt). Quantitative TEM of cardiomyocyte mitochondria C3HWT hearts have more electron-dense compact mitochondrial cristae compared with C57WT. In response to ACF, mitochondrial area and cristae integrity are normal in C3HWT; however, there is mitochondrial swelling, cristae lysis, and disorganization in both C57WT and MNX hearts. Tissue analysis shows that C3HWT hearts have increased autophagy, antioxidant, and glucose fatty acid oxidation-related genes compared with C57WT. Comparative transcriptomic analysis of cardiomyocytes from ACF was dependent upon mtDNA haplotype. C57mtDNA haplotype was associated with increased inflammatory/protein synthesis pathways and downregulation of bioenergetic pathways, whereas C3HmtDNA showed upregulation of autophagy genes. In conclusion, ACF in vivo shows a protective response of C3Hmt haplotype that is in large part driven by mitochondrial nuclear genome interaction.NEW & NOTEWORTHY The results of this study support the effects of mtDNA haplotype on nuclear gene expression in cardiomyocytes. Currently, there is no acceptable therapy for volume overload due to mitral regurgitation. The findings of this study could suggest that mtDNA haplotype activates different pathways after ACF warrants further investigations on human population of heart disease from different ancestry backgrounds.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Haplótipos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , DNA Mitocondrial/genética
3.
Ann Thorac Surg ; 116(4): 834-843, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398036

RESUMO

BACKGROUND: Patients with valvular heart disease require cardiopulmonary bypass and cardiac arrest. Here, we test the hypothesis that exosomal hemoglobin formed during cardiopulmonary bypass mediates acute cardiac injury in humans and in an animal model system. METHODS: Plasma exosomes were collected from arterial blood at baseline and 30 minutes after aortic cross-clamp release in 20 patients with primary mitral regurgitation and 7 with aortic stenosis. These exosomes were injected into Sprague-Dawley rats and studied at multiple times up to 30 days. Tissue was examined by hematoxylin and eosin stain, immunohistochemistry, transmission electron microscopy, and brain natriuretic peptide. RESULTS: Troponin I levels increased from 36 ± 88 ng/L to 3622 ± 3054 ng/L and correlated with exosome hemoglobin content (Spearman r = 0.7136, < .0001, n = 24). Injection of exosomes isolated 30 minutes after cross-clamp release into Sprague-Dawley rats resulted in cardiomyocyte myofibrillar loss at 3 days. Transmission electron microscopy demonstrated accumulation of electron dense particles of ferritin within cardiomyocytes, in the interstitial space, and within exosomes. At 21 days after injection, there was myofibrillar and myosin breakdown, interstitial fibrosis, elevated brain natriuretic peptide, and left ventricle diastolic dysfunction measured by echocardiography/Doppler. Pericardial fluid exosomal hemoglobin content is fourfold higher than simultaneous plasma exosome hemoglobin, suggesting a cardiac source of exosomal hemoglobin. CONCLUSIONS: Red blood cell and cardiac-derived exosomal hemoglobin may be involved in myocardial injury during cardiopulmonary bypass in patients with valvular heart disease.


Assuntos
Exossomos , Traumatismos Cardíacos , Doenças das Valvas Cardíacas , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Peptídeo Natriurético Encefálico , Miócitos Cardíacos , Modelos Animais de Doenças
4.
JACC Basic Transl Sci ; 7(10): 973-981, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337921

RESUMO

Interstitial collagen loss and cardiomyocyte ultrastructural damage accounts for left ventricular (LV) sphericity and decrease in LV twist and circumferential strain. Normal LV diastolic function belies significantly abnormal left atrial (LA) function and early LV diastolic untwist rate. This underscores the complex interplay of LV and LA myocardial remodeling and function in the pathophysiology of primary mitral regurgitation. In this study, we connect LA function with LV systolic and diastolic myocardial remodeling and function using cardiac magnetic resonance tissue tagging in primary mitral regurgitation.

5.
J Thorac Cardiovasc Surg ; 164(6): e289-e308, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33451850

RESUMO

OBJECTIVE: Hemolysis, characterized by formation of free hemoglobin (Hb), occurs in patients undergoing cardiopulmonary bypass (CPB). However, there is no study of the dynamic changes in red blood cell (RBC)-derived exosomes (Exos) released during CPB, nor whether these particles mediate acute kidney injury (AKI). METHODS: This study is a comprehensive time-course analysis, at baseline, 30 minutes, to 24 hours post-crossclamp release (XCR) to determine (1) Exos Hb content; (2) free Hb/heme, haptoglobin, hemopexin; and (3) urinary markers of AKI over the same time period. In addition, we developed a model system in Sprague-Dawley rats to test for AKI after intravenous injection of Exos Hb released during CPB. RESULTS: In 30 patients undergoing CPB, there is a significant increase in plasma Hb-positive Exos but not microvesicles 30 minutes post-XCR versus other time points, with a simultaneous decrease in the haptoglobin/Hb ratio. These changes presage a significant increase in urine neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 at 24 hours. Intravenous injection of plasma Exos (109-10 particles obtained 30 minutes post-XCR) into rats causes AKI at 72 hours, manifested by multifocal degeneration of proximal tubular epithelium. At 21 days, there is persistent tubular injury and interstitial fibrosis. Intravenous injection of Exos from 35-day-old stored RBCs into rats results in glomerular-tubular injury, increased kidney ferritin and hemoxygenase-1 expression, and significant elevation of kidney injury molecule-1 and proteinuria at 72 hours. CONCLUSIONS: These combined studies raise the potential for RBC-derived Exos, released during CPB, to target the kidney and mediate AKI.


Assuntos
Injúria Renal Aguda , Exossomos , Ratos , Animais , Ponte Cardiopulmonar/efeitos adversos , Haptoglobinas/metabolismo , Exossomos/metabolismo , Ratos Sprague-Dawley , Lipocalina-2 , Biomarcadores , Hemoglobinas/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo
6.
Arch Toxicol ; 95(1): 179-193, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979061

RESUMO

Accidental bromine spills are common and its large industrial stores risk potential terrorist attacks. The mechanisms of bromine toxicity and effective therapeutic strategies are unknown. Our studies demonstrate that inhaled bromine causes deleterious cardiac manifestations. In this manuscript we describe mechanisms of delayed cardiac effects in the survivors of a single bromine exposure. Rats were exposed to bromine (600 ppm for 45 min) and the survivors were sacrificed at 14 or 28 days. Echocardiography, hemodynamic analysis, histology, transmission electron microscopy (TEM) and biochemical analysis of cardiac tissue were performed to assess functional, structural and molecular effects. Increases in right ventricular (RV) and left ventricular (LV) end-diastolic pressure and LV end-diastolic wall stress with increased LV fibrosis were observed. TEM images demonstrated myofibrillar loss, cytoskeletal breakdown and mitochondrial damage at both time points. Increases in cardiac troponin I (cTnI) and N-terminal pro brain natriuretic peptide (NT-proBNP) reflected myofibrillar damage and increased LV wall stress. LV shortening decreased as a function of increasing LV end-systolic wall stress and was accompanied by increased sarcoendoplasmic reticulum calcium ATPase (SERCA) inactivation and a striking dephosphorylation of phospholamban. NADPH oxidase 2 and protein phosphatase 1 were also increased. Increased circulating eosinophils and myocardial 4-hydroxynonenal content suggested increased oxidative stress as a key contributing factor to these effects. Thus, a continuous oxidative stress-induced chronic myocardial damage along with phospholamban dephosphorylation are critical for bromine-induced chronic cardiac dysfunction. These findings in our preclinical model will educate clinicians and public health personnel and provide important endpoints to evaluate therapies.


Assuntos
Bromo , Cardiomegalia/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda , Função Ventricular Direita , Remodelação Ventricular , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotoxicidade , Diástole , Modelos Animais de Doenças , Fibrose , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/metabolismo , Miocárdio/ultraestrutura , NADPH Oxidase 2/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sístole , Fatores de Tempo , Troponina I/metabolismo , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
7.
JACC Basic Transl Sci ; 5(2): 109-122, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32140620

RESUMO

Increasing left atrial (LA) size predicts outcomes in patients with isolated mitral regurgitation (MR). Chymase is plentiful in the human heart and affects extracellular matrix remodeling. Chymase activation correlates to LA fibrosis, LA enlargement, and a decreased total LA emptying fraction in addition to having a potential intracellular role in mediating myofibrillar breakdown in LA myocytes. Because of the unreliability of the left ventricular ejection fraction in predicting outcomes in MR, LA size and the total LA emptying fraction may be more suitable indicators for timing of surgical intervention.

8.
Heliyon ; 5(4): e01397, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30997426

RESUMO

BACKGROUND: Volume overload (VO) of isolated mitral regurgitation (MR) or aortocaval fistula (ACF) is associated with extracellular matrix degradation and cardiomyocyte myofibrillar and desmin breakdown. Left ventricular (LV) chymase activity is increased in VO and recent studies demonstrate chymase presence within cardiomyocytes. Here we test the hypothesis that chymase within the cardiomyocyte coincides with myosin and desmin breakdown in VO. METHODS AND RESULTS: Aortocaval fistula (ACF) was induced in Sprague Dawley (SD) rats and was compared to age-matched sham-operated rats at 24 hours, 4 and 12 weeks. Immunohistochemistry (IHC) and transmission electron microscopy (TEM) immunogold of LV tissue demonstrate chymase within cardiomyocytes at all ACF time points. IHC for myosin demonstrates myofibrillar disorganization starting at 24 hours. Proteolytic presence of chymase in cardiomyocytes is verified by in situ chymotryptic tissue activity that is inhibited by pretreatment with a chymase inhibitor. Real-time PCR of isolated cardiomyocytes at all ACF time points and in situ hybridization demonstrate endothelial cells and fibroblasts as a major source of chymase mRNA in addition to mast cells. Chymase added to adult rat cardiomyocytes in vitro is taken up by a dynamin-mediated process and myosin breakdown is attenuated by dynamin inhibitor, suggesting that chymase uptake is essential for myosin breakdown. In a previous study in the dog model of chronic MR, the intracellular changes were attributed to extracellular effects. However, we now demonstrate intracellular effects of chymase in both species. CONCLUSION: In response to VO, fibroblast and endothelial cells produce chymase and subsequent cardiomyocyte chymase uptake is followed by myosin degradation. The results demonstrate a novel intracellular chymase-mediated mechanism of cardiomyocyte dysfunction and adverse remodeling in a pure VO.

9.
Am J Physiol Heart Circ Physiol ; 316(1): H212-H223, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379573

RESUMO

Halogens are widely used, highly toxic chemicals that pose a potential threat to humans because of their abundance. Halogens such as bromine (Br2) cause severe pulmonary and systemic injuries; however, the mechanisms of their toxicity are largely unknown. Here, we demonstrated that Br2 and reactive brominated species produced in the lung and released in blood reach the heart and cause acute cardiac ultrastructural damage and dysfunction in rats. Br2-induced cardiac damage was demonstrated by acute (3-24 h) increases in circulating troponin I, heart-type fatty acid-binding protein, and NH2-terminal pro-brain natriuretic peptide. Transmission electron microscopy demonstrated acute (3-24 h) cardiac contraction band necrosis, disruption of z-disks, and mitochondrial swelling and disorganization. Echocardiography and hemodynamic analysis revealed left ventricular (LV) systolic and diastolic dysfunction at 7 days. Plasma and LV tissue had increased levels of brominated fatty acids. 2-Bromohexadecanal (Br-HDA) injected into the LV cavity of a normal rat caused acute LV enlargement with extensive disruption of the sarcomeric architecture and mitochondrial damage. There was extensive infiltration of neutrophils and increased myeloperoxidase levels in the hearts of Br2- or Br2 reactant-exposed rats. Increased bromination of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and increased phosphalamban after Br2 inhalation decreased cardiac SERCA activity by 70%. SERCA inactivation was accompanied by increased Ca2+-sensitive LV calpain activity. The calpain-specific inhibitor MDL28170 administered within 1 h after exposure significantly decreased calpain activity and acute mortality. Bromine inhalation and formation of reactive brominated species caused acute cardiac injury and myocardial damage that can lead to heart failure. NEW & NOTEWORTHY The present study defines left ventricular systolic and diastolic dysfunction due to cardiac injury after bromine (Br2) inhalation. A calpain-dependent mechanism was identified as a potential mediator of cardiac ultrastructure damage. This study not only highlights the importance of monitoring acute cardiac symptoms in victims of Br2 exposure but also defines calpains as a potential target to treat Br2-induced toxicity.


Assuntos
Bromo/toxicidade , Calpaína/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Miócitos Cardíacos/efeitos dos fármacos , Disfunção Ventricular/etiologia , Administração por Inalação , Animais , Biomarcadores/sangue , Bromo/administração & dosagem , Células Cultivadas , Hemodinâmica , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Disfunção Ventricular/metabolismo , Disfunção Ventricular/patologia , Remodelação Ventricular
10.
Am J Physiol Heart Circ Physiol ; 313(1): H32-H45, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455287

RESUMO

Heart failure due to chronic volume overload (VO) in rats and humans is characterized by disorganization of the cardiomyocyte desmin/mitochondrial network. Here, we tested the hypothesis that desmin breakdown is an early and continuous process throughout VO. Male Sprague-Dawley rats had aortocaval fistula (ACF) or sham surgery and were examined 24 h and 4 and 12 wk later. Desmin/mitochondrial ultrastructure was examined by transmission electron microscopy (TEM) and immunohistochemistry (IHC). Protein and kinome analysis were performed in isolated cardiomyocytes, and desmin cleavage was assessed by mass spectrometry in left ventricular (LV) tissue. Echocardiography demonstrated a 40% decrease in the LV mass-to-volume ratio with spherical remodeling at 4 wk with ACF and LV systolic dysfunction at 12 wk. Starting at 24 h and continuing to 4 and 12 wk, with ACF there is TEM evidence of extensive mitochondrial clustering, IHC evidence of disorganization associated with desmin breakdown, and desmin protein cleavage verified by Western blot analysis and mass spectrometry. IHC results revealed that ACF cardiomyocytes at 4 and 12 wk had perinuclear translocation of αB-crystallin from the Z disk with increased α, ß-unsaturated aldehyde 4-hydroxynonelal. Use of protein markers with verification by TUNEL staining and kinome analysis revealed an absence of cardiomyocyte apoptosis at 4 and 12 wk of ACF. Significant increases in protein indicators of mitophagy were countered by a sixfold increase in p62/sequestosome-1, which is indicative of an inability to complete autophagy. An early and continuous disruption of the desmin/mitochondrial architecture, accompanied by oxidative stress and inhibition of apoptosis and mitophagy, suggests its causal role in LV dilatation and systolic dysfunction in VO.NEW & NOTEWORTHY This study provides new evidence of early onset (24 h) and continuous (4-12 wk) desmin misarrangement and disruption of the normal sarcomeric and mitochondrial architecture throughout the progression of volume overload heart failure, suggesting a causal link between desmin cleavage and mitochondrial disorganization and damage.


Assuntos
Desmina/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/ultraestrutura , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Apoptose , Células Cultivadas , Doença Crônica , Insuficiência Cardíaca/complicações , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/complicações
11.
J Thorac Cardiovasc Surg ; 152(4): 1059-1070.e2, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464577

RESUMO

OBJECTIVE: Recent studies have demonstrated improved outcomes in patients receiving early surgery for degenerative mitral regurgitation (MR) rather than adhering to conventional guidelines for surgical intervention. However, studies providing a mechanistic basis for these findings are limited. METHODS: Left ventricular (LV) myocardium from 22 patients undergoing mitral valve repair for American Heart Association class I indications was evaluated for desmin, the voltage-dependent anion channel, α-B-crystallin, and α, ß-unsaturated aldehyde 4-hydroxynonenal by fluorescence microscopy. The same was evaluated in 6 normal control LV autopsy specimens. Cardiomyocyte ultrastructure was examined by transmission electron microscopy. Magnetic resonance imaging with tissue tagging was performed in 55 normal subjects and 22 MR patients before and 6 months after mitral valve repair. RESULTS: LV end-diastolic volume was 1.5-fold (P < .0001) higher and LV mass-to-volume ratio was lower in MR (P = .004) hearts versus normal hearts and showed improvement 6 months after mitral valve surgery. However, LV ejection fraction decreased from 65% ± 7% to 52% ± 9% (P < .0001) and LV circumferential (P < .0001) and longitudinal strain decreased significantly below normal values (P = .002) after surgery. Hearts with MR had a 53% decrease in desmin (P < .0001) and a 2.6-fold increase in desmin aggregates (P < .0001) versus normal, along with substantial, intense perinuclear staining of α, ß-unsaturated aldehyde 4-hydroxynonenal in areas of mitochondrial breakdown and clustering. Transmission electron microscopy demonstrated numerous electron-dense deposits, myofibrillar loss, Z-disc abnormalities, and extensive granulofilamentous debris identified as desmin-positive by immunogold transmission electron microscopy. CONCLUSIONS: Despite well-preserved preoperative LV ejection fraction, severe oxidative stress and disruption of cardiomyocyte desmin-mitochondrial sarcomeric architecture may explain postoperative LV functional decline and further supports the move toward earlier surgical intervention.


Assuntos
Desmina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Insuficiência da Valva Mitral/metabolismo , Insuficiência da Valva Mitral/cirurgia , Função Ventricular Esquerda , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldeídos/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Pessoa de Meia-Idade , Miócitos Cardíacos/ultraestrutura , Resultado do Tratamento , Canais de Ânion Dependentes de Voltagem/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
12.
J Mol Cell Cardiol ; 92: 1-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26807691

RESUMO

BACKGROUND: Previous work has identified mast cells as the major source of chymase largely associated with a profibrotic phenotype. We recently reported increased fibroblast autophagic procollagen degradation in a rat model of pure volume overload (VO). Here we demonstrate a connection between increased fibroblast chymase production and autophagic digestion of procollagen in the pure VO of aortocaval fistula (ACF) in the rat. METHODS AND RESULTS: Isolated LV fibroblasts taken from 4 and 12week ACF Sprague-Dawley rats have significant increases in chymase mRNA and chymase activity. Increased intracellular chymase protein is documented by immunocytochemistry in the ACF fibroblasts compared to cells obtained from age-matched sham rats. To implicate VO as a stimulus for chymase production, we show that isolated adult rat LV fibroblasts subjected to 24h of 20% cyclical stretch induces chymase mRNA and protein production. Exogenous chymase treatment of control isolated adult cardiac fibroblasts demonstrates that chymase is internalized through a dynamin-dependent mechanism. Chymase treatment leads to an increased formation of autophagic vacuoles, LC3-II production, autophagic flux, resulting in increased procollagen degradation. Chymase inhibitor treatment reduces cyclical stretch-induced autophagy in isolated cardiac fibroblasts, demonstrating chymase's role in autophagy induction. CONCLUSION: In a pure VO model, chymase produced in adult cardiac fibroblasts leads to autophagic degradation of newly synthesized intracellular procollagen I, suggesting a new role of chymase in extracellular matrix degradation.


Assuntos
Aorta/metabolismo , Quimases/biossíntese , Insuficiência Cardíaca/metabolismo , Pró-Colágeno/metabolismo , Animais , Aorta/patologia , Fístula Artério-Arterial , Autofagia/genética , Quimases/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Insuficiência Cardíaca/patologia , Humanos , Mastócitos/metabolismo , Mastócitos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Fagossomos/metabolismo , Proteólise , RNA Mensageiro/biossíntese , Ratos
13.
J Mol Cell Cardiol ; 89(Pt B): 241-250, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26596413

RESUMO

In a pure volume overloaded (VO) heart, interstitial collagen loss is degraded by matrix metalloproteinases (MMPs) that leads to left ventricular (LV) dilatation and heart failure. Cardiac fibroblasts are the primary source of extracellular matrix proteins that connect cardiomyocytes. The goal of this study was to determine how VO affects intracellular procollagen in cardiac fibroblasts. Using the aortocaval fistula (ACF) model in Sprague-Dawley rats, we demonstrate that cardiac fibroblasts isolated from 4 and 12 wk ACF animals have decreased intracellular procollagen I compared to the fibroblasts from age-matched shams. The reduction of procollagen I is associated with increased autophagy as demonstrated by increased autophagic vacuoles and LC3-II expression. To test the relationship between autophagy and procollagen degradation, we treated adult cardiac fibroblasts with either an autophagy inducer, rapamycin, or an inhibitor, wortmannin, and found that procollagen I protein levels were decreased in fibroblasts treated with rapamycin and elevated in wortmannin-treated cells. In addition, we demonstrated that VO induces oxidative stresses in cardiac fibroblasts from 4 and 12 wk ACF rats. Treatment of cultured cardiac fibroblasts with an oxidative stress-inducing agent (DMNQ) induces autophagy and intracellular procollagen I and fibronectin degradation, which is reversed by wortmannin but not by the global MMP inhibitor (PD166793). Mechanical stretch of cardiac fibroblasts also induces oxidative stress and autophagic degradation of procollagen I and fibronectin. Our results suggest that in addition to the well-known effects of MMPs on extracellular collagen degradation in VO, there is a concurrent degradation of intracellular procollagen and fibronectin mediated by oxidative stress-induced autophagy in cardiac fibroblasts.


Assuntos
Autofagia , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Miocárdio/patologia , Proteólise , Animais , Peso Corporal , Separação Celular , Ativação Enzimática , Fibroblastos/ultraestrutura , Fibronectinas/metabolismo , Frequência Cardíaca , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Estresse Mecânico , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Fístula Vascular/patologia , Fístula Vascular/fisiopatologia , Função Ventricular Esquerda , Remodelação Ventricular
14.
PLoS One ; 9(4): e94732, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733352

RESUMO

Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase entry into cardiomyocytes.


Assuntos
Quimases/fisiologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/enzimologia , Ferimentos e Lesões/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Quimases/antagonistas & inibidores , Citoplasma/metabolismo , Cães , Endocitose , Isquemia/patologia , Mastócitos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/química , Traumatismo por Reperfusão , Transferrina/metabolismo , Troponina I/sangue
15.
Ther Adv Cardiovasc Dis ; 8(3): 97-118, 2014 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-24692245

RESUMO

OBJECTIVES: Heart failure is typically preceded by myocardial hypertrophy and remodeling, which can be concentric due to pressure overload (PO), or eccentric because of volume overload (VO). The molecular mechanisms that underlie these differing patterns of hypertrophy are distinct and have yet to be fully elucidated. Thus, the goal of this work is to identify novel therapeutic targets for cardiovascular conditions marked by hypertrophy that have previously been resistant to medical treatment, such as a pure VO. METHODS: Concentric or eccentric hypertrophy was induced in rats for 2 weeks with transverse aortic constriction (TAC) or aortocaval fistula (ACF), respectively. Hemodynamic and echocardiographic analysis were used to assess the development of left ventricular (LV) hypertrophy and functional differences between groups. Changes in gene expression were determined by microarray and further characterized with Ingenuity Pathway Analysis. RESULTS: Both models of hypertrophy increased LV mass. Rats with TAC demonstrated concentric LV remodeling while rats with ACF exhibited eccentric LV remodeling. Microarray analysis associated eccentric remodeling with a more extensive alteration of gene expression compared with concentric remodeling. Rats with VO had a marked activation of extracellular matrix genes, promotion of cell cycle genes, downregulation of genes associated with oxidative metabolism, and dysregulation of genes critical to cardiac contractile function. Rats with PO demonstrated similar categorical changes, but with the involvement of fewer individual genes. CONCLUSIONS: Our results indicate that eccentric remodeling is a far more complex process than concentric remodeling. This study highlights the importance of several key biological functions early in the course of VO, including regulation of matrix, metabolism, cell proliferation, and contractile function. Thus, the results of this analysis will inform the ongoing search for new treatments to prevent the progression to heart failure in VO.

16.
Circ Heart Fail ; 7(1): 194-202, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24297688

RESUMO

BACKGROUND: There is currently no therapy proven to attenuate left ventricular (LV) dilatation and dysfunction in volume overload induced by isolated mitral regurgitation (MR). To better understand molecular signatures underlying isolated MR, we performed LV gene expression analyses and overlaid regulated genes into ingenuity pathway analysis in patients with isolated MR. METHODS AND RESULTS: Gene arrays from LV tissue of 35 patients, taken at the time of surgical repair for isolated MR, were compared with 13 normal controls. Cine-MRI was performed in 31 patients before surgery to measure LV function and volume from serial short-axis summation. LV end-diastolic volume was 2-fold (P=0.005) higher in MR patients than in normal controls, and LV ejection fraction was 64±7% (50%-79%) in MR patients. Ingenuity pathway analysis identified significant activation of pathways involved in ß-adrenergic, cAMP, and G-protein-coupled signaling, whereas there was downregulation of pathways associated with complement activation and acute phase response. SERCA2a and phospholamban protein were unchanged in MR versus control left ventricles. However, mRNA and protein levels of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) regulatory protein sarcolipin, which is predominantly expressed in normal atria, were increased 12- and 6-fold, respectively. Immunofluorescence analysis confirmed the absence of sarcolipin in normal left ventricles and its marked upregulation in MR left ventricles. CONCLUSIONS: These results demonstrate alterations in multiple pathways associated with ß-adrenergic signaling and sarcolipin in the left ventricles of patients with isolated MR and LV ejection fraction>50%, suggesting a beneficial role for ß-adrenergic blockade in isolated MR.


Assuntos
Adrenérgicos/metabolismo , Insuficiência da Valva Mitral/metabolismo , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/metabolismo , Adulto , Idoso , Biópsia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/fisiopatologia , Proteínas Musculares/genética , Proteolipídeos/genética , Transdução de Sinais/fisiologia , Regulação para Cima , Disfunção Ventricular Esquerda/fisiopatologia
17.
Life Sci ; 92(11): 648-56, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22728715

RESUMO

AIMS: Increased O-linked attachment of ß-N-acetylglucosamine (O-GlcNAc) to proteins has been implicated in the adverse effects of diabetes on the heart, although this has typically been based on models of severe hyperglycemia. Diabetes has also been associated with dysregulation of autophagy, a critical cell survival process; however, little is known regarding autophagy in the diabetic heart or whether this is influenced by O-GlcNAcylation or hemodynamic stress. MAIN METHODS: Young male rats were assigned to control (12% kcal fat/19% protein/69% carbohydrate), high fat diet (60/19/21%) and type 2 diabetic (high fat diet+low dose streptozotocin) groups for 8 weeks, followed by sham or pressure overload surgeries; animals were sacrificed 8 weeks after surgery. KEY FINDINGS: A modest increase in arterial pressure resulted in no significant effects on cardiac function in control or high fat groups, while diabetic hearts exhibited contractile dysfunction and increased apoptosis and scar formation. Immunoprecipitation studies revealed, for the first time, that Beclin-1, which plays a critical early role in autophagy, and the anti-apoptotic Bcl-2, are targets for O-GlcNAcylation. Interestingly, we also found that cardiomyocytes isolated from type 2 diabetic db/db mice exhibited a blunted autophagic response and this was at least partially reversed by inhibiting glucose entry into the hexosamine biosynthesis pathway, which regulates O-GlcNAc synthesis. We also found that acutely augmenting O-GlcNAc levels in non-diabetic cardiomyocytes mimicked the effects of diabetes by blunting autophagic signaling. SIGNIFICANCE: These data suggest that O-GlcNAc-mediated inhibition of autophagy may contribute to the abnormal response of diabetic hearts to hemodynamic stress.


Assuntos
Acetilglucosamina/metabolismo , Autofagia/fisiologia , Cardiomiopatias Diabéticas/fisiopatologia , Miócitos Cardíacos/patologia , Transdução de Sinais , Acilação/fisiologia , Animais , Pressão Arterial , Peso Corporal , Modelos Animais de Doenças , Hiperglicemia/fisiopatologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
PLoS One ; 7(6): e40110, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768235

RESUMO

BACKGROUND: The clinical problem of a "pure volume overload" as in isolated mitral or aortic regurgitation currently has no documented medical therapy that attenuates collagen loss and the resultant left ventricular (LV) dilatation and failure. Here, we identify a potential mechanism related to upregulation of the kallikrein-kinin system in the volume overload of aortocaval fistula (ACF) in the rat. METHODOLOGY/PRINCIPAL FINDINGS: LV interstitial fluid (ISF) collection, hemodynamics, and echocardiography were performed in age-matched shams and 4 and 15 wk ACF rats. ACF rats had LV dilatation and a 2-fold increase in LV end-diastolic pressure, along with increases in LV ISF bradykinin, myocardial kallikrein and bradykinin type-2 receptor (BK(2)R) mRNA expression. Mast cell numbers were increased and interstitial collagen was decreased at 4 and 15 wk ACF, despite increases in LV ACE and chymase activities. Treatment with the kallikrein inhibitor aprotinin preserved interstitial collagen, prevented the increase in mast cells, and improved LV systolic function at 4 wk ACF. To establish a cause and effect between ISF bradykinin and mast cell-mediated collagen loss, direct LV interstitial bradykinin infusion in vivo for 24 hrs produced a 2-fold increase in mast cell numbers and a 30% decrease in interstitial collagen, which were prevented by BK(2)R antagonist. To further connect myocardial stretch with cellular kallikrein-kinin system upregulation, 24 hrs cyclic stretch of adult cardiomyocytes and fibroblasts produced increased kallikrein, BK(2)R mRNA expressions, bradykinin protein and gelatinase activity, which were all decreased by the kallikrein inhibitor-aprotinin. CONCLUSIONS/SIGNIFICANCE: A pure volume overload is associated with upregulation of the kallikrein-kinin system and ISF bradykinin, which mediates mast cell infiltration, extracellular matrix loss, and LV dysfunction-all of which are improved by kallikrein inhibition. The current investigation provides important new insights into future potential medical therapies for the volume overload of aortic and mitral regurgitation.


Assuntos
Colágeno/metabolismo , Inflamação/patologia , Sistema Calicreína-Cinina , Miocárdio/patologia , Regulação para Cima , Remodelação Ventricular , Angiotensina II/sangue , Enzima de Conversão de Angiotensina 2 , Animais , Aprotinina/farmacologia , Bradicinina/sangue , Catecolaminas/sangue , Contagem de Células , Degranulação Celular/efeitos dos fármacos , Quimases/metabolismo , Líquido Extracelular , Gelatinases/metabolismo , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Imuno-Histoquímica , Inflamação/complicações , Inflamação/genética , Sistema Calicreína-Cinina/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Mastócitos/fisiologia , Modelos Cardiovasculares , Miocárdio/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores da Bradicinina/metabolismo , Ultrassonografia , Regulação para Cima/efeitos dos fármacos , Fístula Vascular/diagnóstico por imagem , Fístula Vascular/genética , Fístula Vascular/patologia , Fístula Vascular/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
19.
Am J Physiol Heart Circ Physiol ; 300(6): H2251-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21421827

RESUMO

Left ventricular (LV) volume overload (VO) causes eccentric remodeling with inflammatory cell infiltration and extracellular matrix (ECM) degradation, for which there is currently no proven therapy. To uncover new pathways that connect inflammation and ECM homeostasis with cellular dysfunction, we determined the cardiac transciptome in subacute, compensated, and decompensated stages based on in vivo hemodynamics and echocardiography in the rat with aortocaval fistula (ACF). LV dilatation at 5 wk was associated with a normal LV end-diastolic dimension-to-posterior wall thickness ratio (LVEDD/PWT; compensated), whereas the early 2-wk (subacute) and late 15-wk (decompensated) ACF groups had significant increases in LVEDD/PWT. Subacute and decompensated stages had a significant upregulation of genes related to inflammation, the ECM, the cell cycle, and apoptosis. These changes were accompanied by neutrophil and macrophage infiltration, nonmyocyte apoptosis, and interstitial collagen loss. At 15 wk, there was a 40-fold increase in the matricellular protein periostin, which inhibits connections between collagen and cells, thereby potentially mediating a side-to-side slippage of cardiomyocytes and LV dilatation. The majority of downregulated genes was composed of mitochondrial enzymes whose suppression progressed from 5 to 15 wk concomitant with LV dilatation and systolic heart failure. The profound decrease in gene expression related to fatty acid, amino acid, and glucose metabolism was associated with the downregulation of peroxisome proliferator associated receptor (PPAR)-α-related and bioenergetic-related genes at 15 wk. In VO, an early phase of inflammation subsides at 5 wk but reappears at 15 wk with marked periostin production along with the suppression of genes related to PPAR-α and energy metabolism.


Assuntos
Progressão da Doença , Matriz Extracelular/patologia , Insuficiência Cardíaca/patologia , Inflamação/patologia , Disfunção Ventricular Esquerda/patologia , Animais , Moléculas de Adesão Celular/metabolismo , Metabolismo Energético/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/fisiologia , Masculino , Modelos Animais , PPAR alfa/metabolismo , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/fisiologia
20.
J Mol Cell Cardiol ; 50(1): 147-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21059354

RESUMO

Volume overload (VO) caused by aortocaval fistula (ACF) is associated with oxidative/inflammatory stress. The resulting inflammation, matrix metalloproteinase (MMP) activation, and collagen degradation is thought to play a pivotal role in left ventricular (LV) dilatation and failure. Since mitochondria are also targets for inflammation and oxidative stress, we hypothesized that there would be bioenergetic dysfunction with acute VO. In Sprague-Dawley rats subjected to 24 hrs of ACF, there was a two-fold increase in LV pressure-volume area in vivo, consistent with increased LV myocardial oxygen usage and increased bioenergetic demand in cardiomyocytes. Isolated cardiomyocytes from ACF LVs demonstrated increased hydrogen peroxide and superoxide formation and increased MMP activity. Subsarcolemmal mitochondria (SSM) showed a 40% decrease in state 3 respiration and proteomic analysis of SSM demonstrated decreased levels of complexes I-V in ACF. Immunohistochemical analysis revealed disruption of the subsarcolemmal location of the SSM network in ACF. To test for a potential link between SSM dysfunction and loss of interstitial collagen, rats were treated with the MMP-inhibitor PD166793 prior to ACF. MMP-inhibitor preserved interstitial collagen, integrin-α5 and the SSM structural arrangement. In addition, the decrease in state 3 mitochondrial respiration with ACF was prevented by PD166793. These studies established an important interaction between degradation of interstitial collagen in acute VO and the disruption of SSM structure and function which could contribute to progression to heart failure.


Assuntos
Colágeno/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Western Blotting , Ecoencefalografia , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...